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Eulerian mesh computations of simple linear and nonlinear one-dimensional wave 
propagations with second and higher order convective difference schemes exhibit non- 
physical oscillations near steep gradient regions of the solution. This computational 
noise may propagate a significant number of mesh intervals away from the regions in 
which it is generated and severely compromise the solution accuracy. Boris, Book, 
and van Leer have developed nonlinear filtering techniques for second order convection 
algorithms which effectively remove computational noise from steep gradient solutions. 
The principal disadvantage of these filtering techniques is that solutions of sharply 
peaked waves are penalized in amplitude accuracy of the extrema. A nonlinear method 
of filtering computational noise from fourth and higher order accurate convective 
difference schemes is introduced which removes the computational noise without in- 
flicting significant amplitude losses in sharply peaked waves. One-dimensional simple 
linear and nonlinear test problems are used to illustrate the performance of various 
unfiltered and filtered convective difference schemes. It is noted that the filtered higher 
order convective difference schemes require less than one-third of the mesh points of the 
filtered second order convective difference schemes to model the extrema of sharply 
peaked waves to the same accuracy. 

Finally, the Accurate Space Derivative method of Gazdag is shown to function with the 
global numerical differentiation performed with compact polynomial splines. This method 
is at least sixth and tenth order accurate, respectively, for modeling linear waves with 
cubic and quintic spline differentation for Courant numbers less than about $. 

1. INTRODUCTION 

Various convective difference schemes are available for approximating the 

convective equations of fluid dynamics. The first order accurate schemes may be 
the most dependable in providing solutions which are free of computational 
noise but these schemes are not the most cost effective to use in many cases. As 
a consequence, the development of higher order accurate convective difference 
schemes has continued. Some examples of these approximations are given in [l-5]. 

All of these higher order approximation methods possess the peculiar property 
that nonphysical oscillations in the solution can be generated in the vicinity of 
steep gradient regions. This computational noise may degrade or destroy the 
solution accuracy. Undesirable physical features of the simulated flow such as 
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negative mass or energy densities may develop. In two or three space dimensions, 
additional undesirable physical features of the simulated flow such as spurious 
vortices may also develop. An example of the latter difficulty is now cited. 

Fromm and Harlow [6] excited the interest of many people in numerical fluid 
mechanics with the numerically generated vortex-shedding photographs for 
simulated incompressible flow about rectangular cylinders. In the stagnation region 
upstream of the obstacle corners, the computations were troubled with numerical 
noise with a wavelength of two mesh intervals. This author repeated some of these 
computations with a Crank-Nicholson type of time differencing with second order 
space differencing in a staggered mesh arrangement of the type used by Fromm 
and Harlow [6] with the pressure defined in the center of the velocity cluster. 
The incompressible Navier-Stokes equations were used rather than the vorticity 
stream-function approach. A Poisson equation of the pressure field was used to 
ensure mass conservation [7]. After the simulation is begun from a slightly per- 
turbed potential flow solution, computational noise was observed as cyclical 
vortex shedding which develops upstream of the obstacle corners. The usuaiKarman 
vortex street is almost completely disfigured with these vortices on the length 
scale of two to three mesh intervals. These vortex shedding computations were 
also performed with the convective terms modeled with the MacCormack [2] 
differencing. For Courant numbers, D = I u I (nt)/dx, less than about 4, com- 
putational noise was again observed in a manner similar to that for the model 
with the Crank-NichoIson time differencing. For simulations at Courant numbers 
greater than +, the usual Karman vortex street was computed free of the spurious 
vortices with results similar to those given by Fromm and Harlow [6]. At these 
Courant numbers, the dissipative properties of the MacCormack differencing 
provided enough artificial diffusion to eradicate the computational noise from 
the solutions. The spurious vortices can also be eradicated from these solutions 
by mesh refinement, which ensures that the cell Reynolds number is less than 
approximately 1. There are situations in flow computations at practical Reynolds 
numbers in which the dissipative properties of a difference scheme may be insuffi- 
cient to adequately control computational noise (see, for example, [S]). Moreover, 
mesh refinement to ensure that the computational cell Reynolds numbers are of 
the order of unity may not be feasible for reasons of economics. In these cases, 
it is most cost effective to apply a smoothing technique to the solution procedure 
to remove the worst consequences of computational noise. There are many 
examples in the open literature of solutions which are adversely affected by com- 
putational noise and of techniques for removing this noise. No attempt is made 
to compare all of these smoothing techniques. Rather, it is the purpose of this 
paper to introduce a general purpose type of filtering technique and compare its 
performance to the following two filters for second order convective difference 
schemes. 
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Boris and Book [9, lo] and van Leer [ll] have introduced two approaches 
to the design of filtered second order schemes. These algorithms substantially 
inhibit or eliminate computational noise generated in strong gradient regions by 
using nonlinear smoothing techniques. These filtered convective algorithms are 
called monotonic schemes because they yield single dependent variable solutions 
in which the solutions are monotonic between the desirable physical extrema 
without nonphysical accentuation of these extrema. In the case of coupled multiple- 
variable simulations, these algorithms may not completely eradicate the com- 
putational noise near steep gradients but the filters prevent the noise from being 
radiated many mesh points from the steep gradient regions. See, for example, [9]. 
For the purposes of illustrating the design and performance of the proposed filter 
in conjunction with fourth and higher order convective difference methods, the 
discrete solution of the hyperbolic equation 

@.fJ/at> + (a(uw)/ax) = 0 (1) 

is used for cases where u equals 1 and where u equals 42 for several different 
initial conditions. The noise waves normally generated by the finite difference 
approximations to Eq. (1) are suppressed with a nonlinear titer which locally 
transforms Eq. (I) into 

@iJ/at> + (a(uoJ)/ax) = (a/ax)(p aw/ax> (2) 

only in the regions where the noise waves are generated and propagated. 
This is the reverse of the procedure presented by Boris and Book [9, IO] in 

which the finite difference approximation of the right-hand term of Eq. (2) is 
added into the algorithm of Eq. (1) at every mesh point and then it may be sub- 
tracted out after the solution is advanced a time step when certain criteria are 
satisfies. The reversible1 version of the Boris-Book algorithm [IO] is used in the 
test calculations which employs Crank-Nicholson time differencing with second 
order space differencing and a viscous coefficient which is a function of the Courant 
number. The reversible Boris-Book algorithm yields single-variable monotonic 
solutions for Courant numbers less than about 0.6. By setting the viscous coefficient 
equal to 0.13 for Courant numbers greater than 0.6, stable but not monotonic 
computations are achieved up to a Courant number of unity in the solution of 
linear problems. 

Van Leer [Ill has presented a method of integrating Eq. (1) which achieves 
monotonic solutions in steep gradient regions through the addition of a nonlinear 
third order term tailored to the second order “zero-average-phase-error method” 

1 The italicized words are used in the illustrations of Section 3 to identify the convective al- 
gorithm applied to the test problems. 
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of Fromm [12]. The method referred to as the Fromm monotonic scheme 
is monotonic for Courant numbers less than or equal to 1. 

Other second order convective difference schemes examined include the Leith 
(see [ 121) scheme (to which the Lax-Wendroff schemes reduce for linear problems) 
and the upstream version of Leith’s scheme by Fromm [12]. The second order 
“zero-average-phase-error method” is constructed by averaging these schemes. 
The second order Crank-Nicholson scheme behaves like Leith’s scheme at small 
Courant numbers. Unlike the Leith scheme, however, it has no damping of 
lagging-error-waves as the Courant number is raised toward 1. As a consequence, 
it was the noisiest second order algorithm tested. 

The fourth order methods examined include a spatial fourth approximation 
(see, for example, [13]) with Crank-Nicholson time differencing, Crowley fourth 
[14], the one-$ux Fromm [15] scheme, and the two-flux Fromm [16] scheme. (These 
two schemes presented by Fromm are nonlinear conservative variants of the 
Crowley [ 141 scheme.) 

Other higher order schemes were examined which included spatia2 sixth and 
eighth order approximations with Crank-Nicholson time differencing, and the 
Accurate Space Derivative (ASD) method of Gazdag [5] with the global numerical 
differentiation performed with cubic (third degree), quintic (fifth degree), or 
septemtic (seventh degree) polynomial splines (herafter referred to as splines) 
rather than the truncated Fourier series which Gazdag used. Higher derivatives 
are obtained by splining the lower order derivatives. Thus, the first derivatives are 
obtained by splining the mesh function data. The second spatial derivatives are 
obtained by splining the first spatial derivatives. This process is repeated for 
spatial derivatives of any desired order. The symbols P = 3 or P = 4 used by 
Gazdag are used here in the same way to designate the number of terms which 
are retained in the timewise truncated Taylor expansion. Thus Gazdag‘s ASD 
method is only modified at the point by which the spatial derivatives are obtained. 

The global differentiation by splines is implemented by the efficient explicit 
tridiagonal matrix algorithm [17] whose elements are matrices for splines of odd- 
degree five and above. For the cubic spline, only three multiples and nine fetches 
per mesh point are required to get a splined derivative at each mesh point. The 
only discrete datum required at each mesh point to implement the cubic spline is 
the centered difference expression (Ai+, - A,-,)/(2dx). For higher degree splines, 
the expression (Ait1 - 24 + &,ww/(~ > x is also required at each mesh 
point where (A) is the value of (w) or derivatives of (w). For the generation of the 
splined derivative at each mesh point, (A) is set to (w) at each mesh point. For 
the generation of the second splined derivative at each mesh point, (A) is set to 
the first derivative of(w) at each mesh point as supplied by the first splined differen- 
tation process. This process is repeated to the degree necessary to generate the 
required values of (A) at each mesh point. 
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For the generation of quintic splined derivatives, 15 multiples per mesh point 
are necessary. (4((N - 1)/2)a + 3) multiples per mesh point are required to 
implement a splined derivative for septemtic (seventh degree) and higher-odd- 
degree splines where (N) is the degree of the polynomial which is the basis function 
for the spline. Splines of discrete mesh function data yield directly the discrete 
((N - 1)/2) derivatives. A formula can be derived to relate the ((N - I)/2 + I) 
derivative to the others directly available. For quintic and higher degree splines, 
the directly available higher derivatives can be used where appropriate rather than 
using spline-on-splines as defined above to get the needed derivatives. Com- 
putational costs of generating the derivatives can be reduced by this strategem 
with little loss in accuracy. As far as nonperiodic boundary conditions are con- 
cerned, ((N - 1)/2) derivatives are required at the ends of the mesh. The values 
of the mesh function are also required at the ends of the mesh. For cubic splines, 
these conditions are straightforward to satisfy in a number of ways (see, for 
example, [18]). Further discussion of these choices is left to future studies. For 
the calculation reported herein, the derivatives required at the ends of the mesh 
are set to zero. 

The order of accuracy in space offered by the splined ASD method is more 
than twice the value of (IV) for linear problems with the Courant number less 
than about 2 for any value of P greater than 2. Thus the cubic splined ASD and 
the quintic splined ASD methods are at least sixth and tenth order accurate in 
space at small Courant numbers for linear problems. For Courant numbers 
greater than about $, the order of accuracy of the splined ASD method is related 
to both (N) and (P). The quintic splined ASD solution has errors about midway 
between a spatial fourth order accurate difference approximation and the pseudo- 
spectral method compared by Orszag and Jayne [13] with finite difference approxi- 
mations. Computations with the septemtic splined ASD method show further 
increase in accuracy over the quintic splined ASD method. Based on these results, 
it is expected that the nonatic (ninth) and higher-degree splined ASD method will 
provide accuracies approaching the pseudospectral or spectral methods. 

This author computed the propagation of a plane two-dimensional inviscid 
incompressible vortex-pair in a quiescent inviscid environment with the previously 
mentioned second order method [7] which is mass and kinetic energy preserving. 
The vortex pair was defined as two identical counter rotating vortices in close 
proximity to one another whose mean direction of propagation was perpendicular 
to the line connecting the center of each vortex. The initial conditions for the 
mean propagation direction of the vortex pair were defined either at zero or 
45 degrees to the coordinates of a square mesh of 28 by 28 computational cells. 
Several different vortex-pair sizes were used so that the sensitivity of the results 
to mesh size could be assessed. The results showed that the difference scheme 
propagated the vortex pair with much less loss in accuracy with the initial mean 
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direction of propagation at zero degrees than compared with 45 degrees to the 
mesh coordinates. Mesh refinement tended to reduce the severity of the wave 
propagation anisotropy, but not dramatically. Fromm [3] added approximations 
to 32 cross-derivative terms to a fourth order convective algorithm of two- 
dimensional unsteady incompressible flow to achieve stable fourth order accuracy 
and more nearly isotropic behavior of wave propagation diagonal to the mesh 
coordinates compared with wave propagation with the mesh coordinates. 

The splined ASD method is a convenient means of generating approximations 
to all of these higher order cross-derivative terms which are needed to reduce the 
anisotropic diagonal flow errors. The splined ASD method has the further 
advantage that the user can flexibly choose the order of accuracy by the degree 
of the spline function selected. Additionally, the splined ASD method applies to 
arbitrary numbers of mesh points whereas methods dependent upon fast Fourier 
transforms do not. The attempt at the complex task of comparing the efficiency 
of the filtered splined ASD method with other discrete algorithms in useful com- 
puter programs is left to future studies. 

The method of implementing the Crank-Nicholson time differencing in the 
spatial fourth, spatial sixth, spatial eighth, and reversible Boris-Book schemes is 
by iterating upon the implicit equations until the errors between successive itera- 
tions are reduced below some preselected low values. The iterative procedure is 
patterned after that used in [7]. Iteration is used to solve these equations because 
of the computer programming convenience offered. 

The formulation of the smoothing routine for the fourth and higher order 
discrete approximations to Eq. (1) is presented in Section 2. The description of 
the comparative numerical experiments for several shapes of simple linear waves 
and two nonlinear waves for various values of the Courant number are presented 
in Section 3. 

2. A NONLINEAR NOISE FILTER 

In this section, an iterative conservative smoothing process is defined which 
removes computational noise from convective computation of the dependent 
variable o. The mesh function variables 4 and S are assigned values for all values 
of (i) between 1 and mm where mm is the number of mesh points considered for 
the convective computation of the dependent variable o. 4 and S are variables 
necessary to the implementation of highly discriminate smoothing with the 
conservative numerical diffusion law 
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where 
LlWj--1,8 = wj - f&-l , 

si = (d~)i-1,2/l dWi-1/2 I, 
K>k>l, 

/.L < 4. 

46 is set to zero for all values of (i) except at certain mesh points at which 4 is 
reset to 1. The criteria for defining the nonzero 4 values are now presented. 

Consider a typical interior mesh point removed (n + 1) mesh intervals from 
the mesh boundary. S is computed for values of (i) equal to (i - n) through 
(i + 1 + n). If the signs of 5’s and Sj+l are opposite, an extremum of wi is deter- 
mined. At such a value of (i), Sd , S,-l , SdMz ,..., S,-, are all required to have the 
same sign. Additionally Sd+1 , Si+2 , Si+3 ,..., Si+l+n are all required to have the 
same but opposite sign as the sign of Si . If all of the signs of S are as required, 
sign continuity exists on each side of the extremum wi . Sign continuity is a 
mathematical way of determining the continuity of the slope of lines connecting 
values of w  assigned to adjoining mesh points on each side of wi . If slope or sign 
continuity does not prevail for (n) values of S on each side of the extremum in wi , 
4 is reset to 1 for the range of (i) from (i - m) through (i + m). No testing for 
sign continuity is performed unless wi is an extremum. The preceding sorting and 
labeling process is applied to each mesh point except near boundaries of the mesh, 
which must be treated in a special manner to prevent artificial diffusion of w  
through the mesh boundary points. The method of treatment of the near boundary 
and boundary points is left to future studies. 

To ensure that the strings of mesh points at which 4 is nonzero in fact designate 
the regions of the mesh in which computational noise resides, it is necessary that 
the proper magnitudes of (n) and (m) be chosen for a particular convective algo- 
rithm. (n) represents one-half the wavelength of the noise waves with the greatest 
wavelength. The fundamental assumption about the noise properties of convective 
algorithms is that the noise of the longest wavelength occurs in the linear convective 
situation. Otherwise, the nonlinear effects in the general convective situation 
tend to drive the wavelengths of computational noise toward the limit of two mesh 
intervals. The magnitude of(m) simply must be large enough to permit the nonzero 
4 values to be continuous over any region in which the above sorting process 
defines a noise wave. If (n) is 2 or 3, it can be shown that (m) must be 1. If (n) is 
4 or 5, it can be shown that (m) must be 2. As is shown in Section 3, values of(n) 
larger than 5 need not be considered for the fourth and higher order convective algo- 
rithms italicized in Section 1. In order to remove the computational noise from these 
convective algorithms, Eq. (3) together with the sign continuity logic and 4 labeling 
procedure is iterated K times. When all values of C$ are zero from this iterative con- 
servative smoothing process, the resultant solutions of w  are defined as monotonic. 
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This definition of a monotonic solution is employed in the remainder of the 
discussion except where the term “nearly monotonic” is referred to. The latter 
term means that the solution is permitted to exhibit overshoots and undershoots 
near steep gradients to within some error tolerance. It turns out that it is cost 
effective to relax the monotonic solution requirement in this fashion. The values 
of (n), (m), (‘JL) and (K) required to satisfy the error tolerance to any selected value 
depends upon the structure of the noise waves. The structure of the noise waves 
depends upon the noise properties of a prospective convective algorithm for various 
values of the Courant number and the nature of the steep gradients which are to 
be simulated with the algorithm. Attempts to determine by analysis the proper 
values of (n), (m), QL) and (K) for the adequate control of computational noise in 
the convective solutions of simple linear and nonlinear waves by the italicized 
fourth and higher order algorithms of Section 1 have failed due to the complexity 
of the problem. Consequently, empirical tests are used to establish the magnitudes 
of these constants. A discussion of these data is provided in Section 3. 

3. COMPARISON OF NUMERICAL EXPERIMENTS 

Numerical experiments are now discussed which involve the application of the 
italicized fourth and higher order convective algorithms of Section 1 with and 
without the use of the filter defined in Section 2 for two sets of test problems. 
The reversible Boris-Book and Fromm monotonic algorithms are also applied 
to these test problems. One set of test problems is linear and the other set is non- 
linear. These sets of test problems are generated by setting the convective velocity, 
U, equal to either 1 or w/2 in Eq. (1) and by choosing a range of initial conditions. 
The initial conditions for the linear wave propagation problems included the 
distributions that were Guassian-shaped, roof-shaped, and roof-shaped with 
round corners, and these distributions with broad tops. Examples of a roof-shaped 
and a Guassian-shaped distribution with broad tops are shown in Figs. 1 and 3, 
respectively, with the solid lines. Steep gradient wavelengths of 2,4,6, 8, 10, 12,24, 
and 48 mesh intervals are simulated in order to investigate the noise and accuracy 
properties of the solutions. The illustrated results are for the short wavelength 
steep gradient distributions. Some discussion of the properties of the longer 
wavelength solutions is also provided. 

In the illustrated results for the linear test problems, the initial distributions 
of the mesh function w  are designated by solid lines. These distributions are also 
the exact solutions which are displayed 60 mesh intervals to the right of the initial 
distribution location. The approximate solutions by the various convective 
algorithms which are designated along the left ordinate in the figures are indicated 
by a dot for the function value at each mesh point. Most of the displayed results 
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are featured at a Courant number of 1’6, with the computations performed for 
600 time cycles. At this Courant number, the errors from the time differencing 
are negligible compared to the space derivative errors. This condition is useful 
in making comparisons of the space derivative errors of the various solution 
algorithms. Other Courant numbers used in the linear wave problems are 0.9, 
0.8, 0.75, 0.6, 0.45, 0.4, 0.3, 0.15, and 0.05 in order to investigate time-differencing 
errors and stability. Some comments on the properties of the solution algorithms 
at Courant numbers other than 1% are provided later. 

The initial conditions for the nonlinear test problems are a ramp distribution 
immersed in uniform distributions. The ramp distribution sloping downward 
to the right constitutes a compression wave initial condition. The ramp distribution 
sloping upward to the right is for an expansion wave initial condition. The initial 
distribution of the ramp is two mesh intervals in these two nonlinear test problems, 

The approximate solutions displayed in Figs. l-6 were carried out without 
the application of the filter of Section 2. In Figs. 1 and 2, the steep gradient regions 
are distributed over too few mesh points to allow smooth solutions, Figures 3 

75 
MESH POINTS 

FIG. 1. The dots indicate the numerical representation of the linear wave shown which has 
been propagated 60 mesh intervals with 600 time cycles by a second, second, sixth, and fourth 
order convective scheme. Note the significant increase in the frequency of the computational 
noise as the order of the convective scheme is increased. o = 0.1; exact solution (-); approxim- 
ate solution (*a**). 
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and 4 show that by moderating the steep gradients of Figs. 1 and 2, the errors 
between the computed and exact solutions are impressively reduced for the 
Crowley and the cubic splined ASD computations. The improvement in the second 
order algorithms is less dramatic. The errors between the exact solution and 
computations with the second order methods can be reduced to the level of the 
Crowley method by more than doubling the number of mesh points over which 
the ramps and the corners of the ramps are distributed. 

Computations show that steep gradient regions and the corners connecting 
them to shallow gradient regions can always be distributed over a sufficient 
number of mesh points so that no noise waves are excited in the convective com- 
putations of any order accuracy for linear wave propagation. Also, the higher 
the order of accuracy of the convective algorithm, the less the steep gradients 
have to be moderated to prevent excitation of the noise waves. Associated with 
this fact is that the noise waves are of higher frequency and lower amplitude as 
the order of accuracy of a given type of convective algorithm is increased. Finally, 
the amplitude but not the frequency of the noise waves is reduced as the steep 
gradient region is moderated for linear wave modeling. These various effects are 
illustrated in the data shown in Figs. l-5 at a Courant number of &.: 

FIG. 2. Same as the comments in Fig. 1, except for sixth, tenth, sixth, and eight order schemes. 
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From Figs. l-5, the wavelengths of the noise waves are taken to be shorter 
than eight, six, and four mesh intervals for fourth, sixth, and above eighth order 
spatial accurate convective difference schemes, respectively. By the definition in 
Section 2, (n) is one-half of these values. These selected values of (n) only apply 
for Courant numbers below about 4. For Courant numbers greater than about $, 
the values of (n) may have to be larger. To illustrate this trend, compare Figs. 2 
and 6. Figure 6 illustrates the noise properties of several convective algorithms at 
a Courant number of 0.8. Note the dramatic gain in the wavelength of the com- 
putational noise of the algorithms with Crank-Nicholson time differencing. To 
compensate for this increased wavelength, it has been found that (n) must be 4 
for spatially fourth or higher order convective algorithms with Crank-NiCholson 
time-differencing in the range of Courant number from about Q through Q. The 
cubic and quintic splined ASD methods with P equal to 4 or 3 require (n) to be 
4 and 3, respectively, in this range of Courant number. The Fromm one-flux 
and the Fromm two-flux schemes require (n) to be 4 between a Courant number 

MESH POINTS 

FIG. 3. Same as the comments in Fig. 1 with the following additional consideration. Compare 
Fig. 1 with Fig. 3 and note the significant increase in the amplitude but not the frequency of the 
computational noise by decreasing the number of mesh intervals over which the steep gradient 
regions are distributed. 
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FIG. 4. Same as the comments in Fig. 2 with the same additional comment as in Fig. 3, except 
compare Fig. 2 with 4. 

FIG. 5. Same as the comments in Fig. 2 with the same additional comment as in Fig. 3, 
except compare Figs. 4 and 5. 
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IESH POINTS 

FIG. 6. Same as the comments in Fig. 2 except for 75 time cycles. Compare Fig. 2 with 6 
and note the reduction in frequency of the computational noise associated with the increase 
in the Courant number. 0 = 0.8. 

of about 4 and &. These schemes require an (n) of 5 for Courant numbers greater 
than about 4 and less than about 1%. The values of (n) recommended for these 
Fromm schemes also are applicable to the Crowley scheme. 

Using the values of (n) and (m) defined above for these various convective 
schemes, computations shown in Figs. 7-12 are performed with the designated 
convective schemes. The fourth and higher order accurate schemes are filtered 
by the method defined in Section 2 for &) equal to & and K equal to 1. A com- 
parison of Figs. 2 and 9 and Figs. 5, 10, and 11 illustrate the power of the filter to 
remove the computational noise from the solutions without inflicting large losses 
in the amplitude response of sharply peaked waves. Figures 10 and 12 show the 
large loss in amplitude response of sharply peaked waves produced by the 
reversible Boris-Book algorithm. The Fromm monotonic algorithm inflicts 
almost this much loss in amplitude accuracy. Even for propagation of a linear 
Guassian wave with a wavelength of 48 mesh points for a 60 mesh interval 
propagation at Courant numbers of b, 3, and j, the errors in the amplitude of 
the extremum are about 6, 4, and $ %, respectively, with the reversible Boris-Book 
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algorithm and about 5, 3, and 2 %, respectively, for the Fromm monotonic 
algorithm. The Crowley fourth order scheme is estimated to require about a 
16 mesh point Guassian distribution to achieve errors in the amplitude of the 
extremum of less than about 5, 2, and 4 % for Courant numbers of &, $, and 2. 
respectively. The cubic splined ASD method achieves errors of less than 1 % in 
the amplitude of the extremum of a 12 mesh point Guassian distribution for these 
three Courant numbers. For Courant numbers about 1% or less, the estimated 
errors of the amplitude of the extremum are less than about 5 y0 for Guassian 
distributions about 10 and 7 mesh points wide for a 60 mesh interval propagation 
with cubic and quintic splined ASD algorithms, respectively. Thus, the monotonic 
second order algorithms require at least three times more mesh points to simulate 
linear peaked waves to the same level of accuracy of the extremum as that required 
by the filtered fourth and higher order accurate convection algorithms. 

The phase-error properties of the various fourth and higher order convective 
difference schemes tested at small Courant numbers are excellent except for short 
wavelength waves. The application of the filter of Section 2 reduces these short 
wavelength phase errors as a comparison of Fig. 2 with 9 indicates. A comparison 
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FIG. 7. The same test computation as shown in Fig. 6 except the application of the filter of 
Section 2 has been used to remove the computational noise in the splined ASD convective schemes. 
(I = 0.8; filter constants: c = 0.1; K = 1. 
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of Fig. 6 with 7 shows that the application of the filter of Section 2 also reduces 
the short wavelength phase errors at a Courant number of +. The phase-error 
properties of the filtered fourth and higher order convective difference schemes 
are as good as or better than the Fromm monotonic scheme for short wavelength 
simulations as the examination of Figs. 7 and 8 show for Courant numbers of Q 
and $. The reversible Boris-Book scheme yields somewhat better phase-error 
properties than the other filtered schemes tested only in the range of Courant 
numbers between & and 4 for the propagation of short wavelength linear waves. 
For Courant numbers greater than about Q, the reversible Boris-Book scheme is 
not competitive with the other filtered convective difference schemes in phase-error 
accuracy for the propagation of short wavelength linear waves. 

In modeling the two nonlinear problems, a staggered mesh is used for the 
velocity term in the Fromm monotonic, the Fromm one-flux, the Fromm two-flux 
and the reversible Boris-Book convective algorithms. The staggered mesh values 
of velocity are obtained by a simple linear interpolation of the values of the 
adjoining mesh points. No staggered mesh is used in the computations with 
spatial fourth and the cubic splined ASD method with (P) equal to 3. The simple 
expansion wave problem is simulated by these various convective algorithms with 
the filter of Section 2 applied for Courant numbers of 0.15, 0.45, and 0.9. (p) is 

75 

MESH POINTS 

FIG. 8. D = 0.4. Filter constants: c = 0.1: K = 1. 

.581/23/r-z 
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set to 1’6 and K is 1. The computational noise generated by the steep gradient 
initial condition is successfully suppressed. After the expansion wave solutions 
have propagated several mesh intervals or more, the disagreement between the 
various solutions tends to reduce. After the expansion wave solutions have 
propagated many mesh intervals, the disagreement between the various solution 
tends to vanish except in the corners of the ramp wave. The reversible Boris-Book 
algorithm and the cubic splined ASD method provided sharper corners than do 
the other convective difference schemes tested. The Fromm one-flux and the 
Fromm two-flux schemes yielded anomalous results at a Courant number of 0.9. 

The simple shock propagation problem is simulated by the various fourth 
and higher order convective algorithms for shock propagations of 60 mesh intervals 
at Courant numbers of 0.15,0.45, and 0.9. Without the aid of the filter of Section 2, 
the solutions in a few time cycles from the start tend toward either precipitous 

FIG. 9. The comparison of Figs. 7,8, and 9 shows that the phase errors of the Fromm monot- 
onic and filtered splined ASD methods are reduced as the Courant number is reduced. However, 
the acuity of the steep gradient regions improves upon reducing the Courant number for filtered 
splined ASD computations, whereas the opposite result occurs in the Fromm monotonic scheme. 
Notice the fine results of the Boris-Book scheme for the Courant number range represented in 
Figs. 8 and 9. A comparison of the results of Leith’s scheme in Fig. 1 with the results of Boris- 
Book scheme in Fig. 9 shows dramatically the power of the Boris-Book filter to improve the 
solution accuracy in phase and amplitude properties. o = 0.1. Filter constants: c = 0.1; K = 1. 



HIGH ORDER MONOTONIC CONVECTION 17 

instability or wildly varying values of the dependent variable rapidly moving 
downstream from the shock location to an observer riding the shock. The applica- 
tion of the filter of Section 2 in conjunction with these various convective algorithms 
eliminates the computational noise from these shock solutions if the appropriate 
choices of(p) and K are used. The monotonic shock solution widths extend about 
two mesh intervals with a small amount of rounding of the downstream corner 
of the shock solution. The reversible Boris-Book scheme yielded solutions with 
shock widths of about two mesh intervals for Courant numbers of 0.15 and 0.45. 
This algorithm yields anomalous solutions for the case with a Courant number 
of 0.9. The Fromm monotonic scheme yielded solutions with shock widths of 
about one and one-half mesh widths for Courant numbers of 0.45 and 0.9. This 
algorithm yielded solutions with shock widths of about two mesh intervals for 
a Courant number of 0.15. The shock speed errors for a Courant number of 0.15 
are estimated at about 0.02% for the reversible Boris-Book, the filtered spatial 
fourth, and the filtered cubic splined ASD method with (I’) equal to 3. The shock 

50 75 100 

MESH POlNTS 

FIG. 10. The Guassion wave distribution is propagated 60 mesh intervals for 600 time cycles. 
Note the excellent phase but poor amplitude properties of the Boris-Book algorithm for this 
problem. Also note the substantial improvement in amplitude response as the order of the filtered 
algorithms is increased. Compare Figs. 5 and 10 and observe the small amount of amplitude 
damping of the peak of the wave which the filter of Section 2 produces. D = 0.1. Filter constants: 
c = 0.1; K = 1. 



18 C. K. FORESTER 

speed errors of the other schemes tested are estimated to be about five times 
larger. The shock speed errors increase as the Courant number is increased for 
all the filtered convective schemes tested with no scheme dramatically more 
accurate than the others at a Courant number of 0.45. 

The computational cost associated with the use of the filter of Section 2 is 
related to the size of the average value of K over many computational time cycles 
or simply K. The larger the value of(p) selected, the smaller the value of R required 
to control the oscillations from the computational noise to some selected error 
tolerance. Steep gradient regions are spread over more mesh intervals as 01) 
increases in size particularly in the range of (p) of $ to Q. 

To maximize computational accuracy in steep gradient regions, it is necessary 
to minimize (I”). To maximize computational efficiency it is necessary to minimize 
both (p) and R. In order to attempt to assess the optimum &FL) and R with respect 
to Courant number for each algorithm tested, the computations of the linear 
and nonlinear test problems defined above are performed for values of (p) of 
0.002,0.02, 0.1, 0.2,0.25, and 0.333. Values of K are determined for computational 
noise whose oscillations are in error either less than one half of 1 “i, or 0 :d. The 
reference level for the percent error calculation is the difference in the maximum 

75 

MESH POINTS 

FIG. 11. Same as the comments in Fig. 10, except compare Figs. 5 and 11. 
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and minimum values of the required solution. These statistical data are summarized 
as follows. 

The range of values of (p) required to minimize R and minimize excessive 
diffusion by the action of Eq. (3) near steep gradients of the convective solution 
is found to be dependent upon the Courant number, the noise properties of the 
convective algorithm, and the stringency of the error tolerance of the allowed 
computational noise. The delineation of the optimum relationship of (CL> with 
Courant number to minimize R, in each tested convective algorithm is determined 
to be impossible with the wide range of values of (,u) chosen. However, it is known 
that the proper range of (p) in which this relationship should be developed is for 
(p) between about & and +. It is also known that (p) must increase with the 
Courant number. Finally, the stringency of the error tolerance of the allowed 
computational noise has a decisive effect on the size of R required at Courant 
numbers greater than about 4. For example, with the shock solutions performed 
with cubic splined ASD approximation with (P) equal to 3 for an error tolerance 
of one-half of I %, the required R values are about 1, 1, and 3 for Courant numbers 
of 0.15, 0.45, and 0.9, respectively, with a (p) of 3. This same computation per- 

FIG. 12. Compare Figs. 11 and 12 and note the increase in phase errors of the various filtered 
solutions with increased Courant number. In spite of this, note the monotonic response of the 
solutions. 0 = 0.4. Filter constants: c = 0.1; K = 1. 
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formed for an error tolerance of 0 % requires R values of about 1, 2, and over 100 
for Courant numbers of 0.15, 0.45, and 0.9, respectively, with (p) of &. Similar 
dramatic increases in the required value of K with Courant number and with the 
stringency of the error tolerance for the shock solution with some of the other 
fourth and higher order convective algorithms are noted for a (p) of 8. Using 
values of(p) of $ in these computations, the value of R required to satisfy the zero 
error tolerance drops sharply at the largest Courant number used. Unfortunately, 
the accuracy of computation of linear problems such as those shown in Figs. 7-12 
are reduced by spreading the steep gradient regions over more mesh intervals 
than are necessary to achieve monotonic solutions. At a value of (p) of %, the 
computations of linear problems such as those displayed in Figs. 7-12 are very 
modestly reduced in accuracy by spreading the steep gradient regions over slightly 
more mesh intervals than are necessary to achieve monotonic solutions. 

The conclusion of the data collected thus far is that it is highly probable that 
for each convective algorithm an empirical relationship with respect to the Courant 
number can be developed which minimizes the size of (p) and K. While the develop- 
ment of such optimum relationships of (p) with Courant number may be cost 
effective in certain applications, further elucidation of such relationships are not 
provided here. Rather, nonoptimized versions of the filter of Section 2 are recom- 
mended for general applications as follows. 

(p) should be set to Q. The error tolerance of the computational noise should 
be selected between zero and several per cent error as desired by the user. The 
reference value for the error computation can be obtained by finding the magnitude 
of the difference the dependent variable across the steep gradient region from 
which the computational noise originates. The Courant number should be restricted 
below the values at which the value ofR shows a dramatic increase in size compared 
with the required size of i? for a small Courant number. 

If the user desires a simpler procedure yet, the following recommendation is 
proposed. (p) should be set to i. (K) should be set to 1 and 2 for local Courant 
numbers less than about 4 and greater than 4, respectively. While this latter 
recommended procedure may yield only “nearly monotonic” solutions of single 
variable linear and nonlinear wave propagations, the overall cost effectiveness of 
this method of choosing (K) may warrant encouraging its use. 

The following comments are offered to aid in justifying the selection of the 
design of the filtering technique of Section 2 compared with other candidate 
designs. A class of filtering techniques has been examined after the van Leer 
filtering concept, which involves truncation errors of higher than third order. 
Specifically, filters which involved second, third, fourth, and sixth divided differ- 
ences of second divided differences were studied. The conclusion of this study is 
that without some nonlinear device like that presented in Section 2 for avoiding 
the application of the filter at sharply peaked waves, the sharp peak of the wave 
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always suffers a nontrivial loss in amplitude accuracy. The higher order Alters 
are very complicated to implement to avoid this difficulty because the coupling 
of mesh point data occurs over very many mesh points. While the high order 
filters could be made to eliminate the gross effects of computational noise, small 
amplitude oscillations are generated in unexpected locations of the solution many 
mesh points from the steep gradient regions. The design of suitable nonlinear 
cutoff devices of these noise components may be possible, but no simple prescrip- 
tion for doing this has been found. As has been noted, the primary shortcoming 
of the Boris-Book and the van Leer computational noise filtering techniques is 
the large loss in amplitude accuracy incurred in the solution of sharply peaked 
waves. The filtering technique proposed in Section 2 is the simplest one discovered 
which avoids this shortcoming while preserving excellent steep gradient acuity. 

The minimum cost associated with the use of the filter of Section 2 is less than 
or more than that required by the Boris-Book filtering technique depending 
upon the number and extent of the steep gradient regions simulated, the total 
number of computational mesh points used in the computational domain, the 
stringency of the error tolerance on the oscillations near the steep gradient regions, 
and the chosen size of the Courant number for the computation. The cost effec- 
tiveness of this filtering technique compared with that of the Boris-Book and 
van Leer techniques will be additionally dependenf upon the efficiency of the 
fourth and higher order solution algorithms with which it is used and the nature 
of the steep gradients to be simulated. The assessment of these various complex 
factors must await further studies. 

In applications where coupled-multivariable equations are solved simultaneously, 
the application of the filter of Section 2 must be made independently to each 
dependent variable each time cycle. Where nonorthogonal computational mesh 
structures are employed, conservative nonorthogonal variants of the ftlter of 
Section 2 may have to be developed. 

CONCLUDING REMARKS 

The simple test problems discussed show that the computational noise excited 
near steep gradient regions in discrete fourth and higher order solutions of simple 
linear and nonlinear hyperbolic waves can be removed by the proposed nonlinear 
filtering technique. The proposed filter reduces the phase errors of short wave- 
length distributions in the solution without inflicting substantial amplitude losses 
in sharply peaked waves. Used in conjunction with fourth and higher order 
convective difference schemes, it requires less than one-third the mesh points to 
model the extrema of sharply peaked waves to a given accuracy than are necessary 
for the filtered second order accurate convective difference schemes of Boris-Book 
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and van Leer. The relative computational cost of using this filtering technique 
is at present uncertain. Definitive quantitative assessment of the cost effectiveness 
of the proposed filtering technique must await further comparative studies in 
realistic flow simulations. 

It is shown that sixth and tenth order accuracy respectively is achieved by the 
cubic and quintic splined ASD method for linear wave propagation problems at 
small Courant number computations. It is expected that the splined ASD algo- 
rithms with the proposed ftlter can be developed to integrate the convective/diffusive 
conservation equations in Cartesian or transformed mesh system whether uniform 
or not. Further study of the application of the proposed filter to other fourth and 
higher order algorithms is also recommended. 
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